Source code for torch_molecule.utils.generic.weights
import torch
[docs]
def init_weights(net, init_type='xavier', init_gain=0.02, verbose=False):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
torch.nn.init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
torch.nn.init.orthogonal_(m.weight.data)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix
torch.nn.init.normal_(m.weight.data, 1.0, init_gain)
torch.nn.init.constant_(m.bias.data, 0.0)
if verbose:
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function