Source code for torch_molecule.predictor.gnn.modeling_gnn

import os
import numpy as np
from tqdm import tqdm
from typing import Optional, Union, Dict, Any, Tuple, List, Callable, Literal, Type
import warnings
from dataclasses import dataclass, field

import torch
from torch_geometric.loader import DataLoader
from torch_geometric.data import Data

from .model import GNN
from ...base import BaseMolecularPredictor
from ...utils import graph_from_smiles
from ...utils.search import (
    suggest_parameter,
    ParameterSpec,
    ParameterType,
    parse_list_params,
)

# Dictionary mapping parameter names to their types and ranges
DEFAULT_GNN_SEARCH_SPACES: Dict[str, ParameterSpec] = {
    # Model architecture parameters
    "gnn_type": ParameterSpec(
        ParameterType.CATEGORICAL, ["gin-virtual", "gcn-virtual", "gin", "gcn"]
    ),
    "norm_layer": ParameterSpec(
        ParameterType.CATEGORICAL,
        [
            "batch_norm",
            "layer_norm",
            "instance_norm",
            "graph_norm",
            "size_norm",
            "pair_norm",
        ],
    ),
    "graph_pooling": ParameterSpec(ParameterType.CATEGORICAL, ["mean", "sum", "max"]),
    "augmented_feature": ParameterSpec(ParameterType.CATEGORICAL, ["maccs,morgan", "maccs", "morgan", None]),
    # Integer-valued parameters
    "num_layer": ParameterSpec(ParameterType.INTEGER, (2, 8)),
    "hidden_size": ParameterSpec(ParameterType.INTEGER, (64, 512)),
    # Float-valued parameters with linear scale
    "drop_ratio": ParameterSpec(ParameterType.FLOAT, (0.0, 0.75)),
    "scheduler_factor": ParameterSpec(ParameterType.FLOAT, (0.1, 0.5)),
    # Float-valued parameters with log scale
    "learning_rate": ParameterSpec(ParameterType.LOG_FLOAT, (1e-5, 1e-2)),
    "weight_decay": ParameterSpec(ParameterType.LOG_FLOAT, (1e-8, 1e-3)),
}

[docs] @dataclass class GNNMolecularPredictor(BaseMolecularPredictor): """This predictor implements a GNN model for molecular property prediction tasks. Parameters ---------- num_task : int, default=1 Number of prediction tasks. task_type : str, default="regression" Type of prediction task, either "regression" or "classification". num_layer : int, default=5 Number of GNN layers. hidden_size : int, default=300 Dimension of hidden node features. gnn_type : str, default="gin-virtual" Type of GNN architecture to use. One of ["gin-virtual", "gcn-virtual", "gin", "gcn"]. drop_ratio : float, default=0.5 Dropout probability. norm_layer : str, default="batch_norm" Type of normalization layer to use. One of ["batch_norm", "layer_norm", "instance_norm", "graph_norm", "size_norm", "pair_norm"]. graph_pooling : str, default="sum" Method for aggregating node features to graph-level representations. One of ["sum", "mean", "max"]. augmented_feature : list, default=["morgan", "maccs"] Additional molecular fingerprints to use as features. It will be concatenated with the graph representation after pooling. batch_size : int, default=128 Number of samples per batch for training. epochs : int, default=500 Maximum number of training epochs. loss_criterion : callable, optional Loss function for training. evaluate_criterion : str or callable, optional Metric for model evaluation. evaluate_higher_better : bool, optional Whether higher values of the evaluation metric are better. learning_rate : float, default=0.001 Learning rate for optimizer. grad_clip_value : float, optional Maximum norm of gradients for gradient clipping. weight_decay : float, default=0.0 L2 regularization strength. patience : int, default=50 Number of epochs to wait for improvement before early stopping. use_lr_scheduler : bool, default=False Whether to use learning rate scheduler. scheduler_factor : float, default=0.5 Factor by which to reduce learning rate when plateau is reached. scheduler_patience : int, default=5 Number of epochs with no improvement after which learning rate will be reduced. verbose : bool, default=False Whether to print progress information during training. """ # Model parameters num_task: int = 1 task_type: str = "regression" num_layer: int = 5 hidden_size: int = 300 gnn_type: str = "gin-virtual" drop_ratio: float = 0.5 norm_layer: str = "batch_norm" graph_pooling: str = "sum" # Augmented features augmented_feature: Optional[list[Literal["morgan", "maccs"]]] = field( default_factory=lambda: ["morgan", "maccs"] ) # Training parameters batch_size: int = 128 epochs: int = 500 loss_criterion: Optional[Callable] = None evaluate_criterion: Optional[Union[str, Callable]] = None evaluate_higher_better: Optional[bool] = None learning_rate: float = 0.001 grad_clip_value: Optional[float] = None weight_decay: float = 0.0 patience: int = 50 # Scheduler parameters use_lr_scheduler: bool = False scheduler_factor: float = 0.5 scheduler_patience: int = 5 verbose: bool = False # Other Non-init fields model_name: str = "GNNMolecularPredictor" fitting_loss: List[float] = field(default_factory=list, init=False) fitting_epoch: int = field(default=0, init=False) model_class: Type[GNN] = field(default=GNN, init=False) def __post_init__(self): """Initialize and validate the model after dataclass initialization.""" super().__post_init__() if self.augmented_feature is not None: valid_augmented_feature = {"morgan", "maccs"} invalid_fps = set(self.augmented_feature) - valid_augmented_feature if invalid_fps: raise ValueError( f"Invalid augmented types: {invalid_fps}. " f"Valid options are: {list(valid_augmented_feature)}" ) # Setup loss criterion and evaluation if self.loss_criterion is None: self.loss_criterion = self._load_default_criterion() self._setup_evaluation(self.evaluate_criterion, self.evaluate_higher_better) if self.norm_layer not in ["batch_norm", "layer_norm", "instance_norm", "graph_norm", "size_norm", "pair_norm"]: raise ValueError(f"Invalid norm_layer: {self.norm_layer}. Valid options are: batch_norm, layer_norm, instance_norm, graph_norm, size_norm, pair_norm") @staticmethod def _get_param_names() -> List[str]: """Get parameter names for the estimator. Returns ------- List[str] List of parameter names that can be used for model configuration. """ return [ # Model Hyperparameters "num_task", "task_type", "num_layer", "hidden_size", "gnn_type", "drop_ratio", "norm_layer", "graph_pooling", # Augmented Features "augmented_feature", # Training Parameters "batch_size", "epochs", "learning_rate", "weight_decay", "patience", "grad_clip_value", "loss_criterion", # Evaluation Parameters "evaluate_name", "evaluate_criterion", "evaluate_higher_better", # Scheduler Parameters "use_lr_scheduler", "scheduler_factor", "scheduler_patience", # Other Parameters "fitting_epoch", "fitting_loss", "device", "verbose" ] def _get_model_params(self, checkpoint: Optional[Dict] = None) -> Dict[str, Any]: if checkpoint is not None: if "hyperparameters" not in checkpoint: raise ValueError("Checkpoint missing 'hyperparameters' key") hyperparameters = checkpoint["hyperparameters"] return { "num_task": hyperparameters.get("num_task", self.num_task), "num_layer": hyperparameters.get("num_layer", self.num_layer), "hidden_size": hyperparameters.get("hidden_size", self.hidden_size), "gnn_type": hyperparameters.get("gnn_type", self.gnn_type), "drop_ratio": hyperparameters.get("drop_ratio", self.drop_ratio), "norm_layer": hyperparameters.get("norm_layer", self.norm_layer), "graph_pooling": hyperparameters.get("graph_pooling", self.graph_pooling), "augmented_feature": hyperparameters.get("augmented_feature", self.augmented_feature) } else: return { "num_task": self.num_task, "num_layer": self.num_layer, "hidden_size": self.hidden_size, "gnn_type": self.gnn_type, "drop_ratio": self.drop_ratio, "norm_layer": self.norm_layer, "graph_pooling": self.graph_pooling, "augmented_feature": self.augmented_feature } def _convert_to_pytorch_data(self, X, y=None): """Convert numpy arrays to PyTorch Geometric data format. """ if self.verbose: iterator = tqdm(enumerate(X), desc="Converting molecules to graphs", total=len(X)) else: iterator = enumerate(X) pyg_graph_list = [] for idx, smiles_or_mol in iterator: if y is not None: properties = y[idx] else: properties = None graph = graph_from_smiles(smiles_or_mol, properties, self.augmented_feature) g = Data() g.num_nodes = graph["num_nodes"] g.edge_index = torch.from_numpy(graph["edge_index"]) del graph["num_nodes"] del graph["edge_index"] if graph["edge_feat"] is not None: g.edge_attr = torch.from_numpy(graph["edge_feat"]) del graph["edge_feat"] if graph["node_feat"] is not None: g.x = torch.from_numpy(graph["node_feat"]) del graph["node_feat"] if graph["y"] is not None: g.y = torch.from_numpy(graph["y"]) del graph["y"] if graph["morgan"] is not None: g.morgan = torch.tensor(graph["morgan"], dtype=torch.int8).view(1, -1) del graph["morgan"] if graph["maccs"] is not None: g.maccs = torch.tensor(graph["maccs"], dtype=torch.int8).view(1, -1) del graph["maccs"] pyg_graph_list.append(g) return pyg_graph_list def _setup_optimizers(self) -> Tuple[torch.optim.Optimizer, Optional[Any]]: """Setup optimization components including optimizer and learning rate scheduler. Returns ------- Tuple[optim.Optimizer, Optional[Any]] A tuple containing: - The configured optimizer - The learning rate scheduler (if enabled, else None) """ optimizer = torch.optim.Adam( self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay ) scheduler = None if self.use_lr_scheduler: scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode="min", factor=self.scheduler_factor, patience=self.scheduler_patience, min_lr=1e-6, cooldown=0, eps=1e-8, ) return optimizer, scheduler def _get_default_search_space(self): """Get the default hyperparameter search space. """ return DEFAULT_GNN_SEARCH_SPACES
[docs] def autofit( self, X_train: List[str], y_train: Optional[Union[List, np.ndarray]], X_val: Optional[List[str]] = None, y_val: Optional[Union[List, np.ndarray]] = None, X_unlbl: Optional[List[str]] = None, search_parameters: Optional[Dict[str, ParameterSpec]] = None, n_trials: int = 10, ) -> "GNNMolecularPredictor": """Automatically find the best hyperparameters using Optuna optimization.""" import optuna # Default search parameters default_search_parameters = self._get_default_search_space() if search_parameters is None: search_parameters = default_search_parameters else: # Validate search parameter keys invalid_params = set(search_parameters.keys()) - set(default_search_parameters.keys()) if invalid_params: raise ValueError( f"Invalid search parameters: {invalid_params}. " f"Valid parameters are: {list(default_search_parameters.keys())}" ) if self.verbose: all_params = set(self._get_param_names()) searched_params = set(search_parameters.keys()) non_searched_params = all_params - searched_params print("\nParameter Search Configuration:") print("-" * 50) print("\n Parameters being searched:") for param in sorted(searched_params): spec = search_parameters[param] if spec.param_type == ParameterType.CATEGORICAL: print(f" • {param}: {spec.value_range}") else: print(f" • {param}: [{spec.value_range[0]}, {spec.value_range[1]}]") print("\n Fixed parameters (not being searched):") for param in sorted(non_searched_params): value = getattr(self, param, "N/A") print(f" • {param}: {value}") print("\n" + "-" * 50) print(f"\nStarting hyperparameter optimization using {self.evaluate_name} metric") print(f"Direction: {'maximize' if self.evaluate_higher_better else 'minimize'}") print(f"Number of trials: {n_trials}") # Variables to track best state best_score = float('-inf') if self.evaluate_higher_better else float('inf') best_state_dict = None best_trial_params = None best_loss = None best_epoch = None def objective(trial): nonlocal best_score, best_state_dict, best_trial_params, best_loss, best_epoch # Define hyperparameters to optimize using the parameter specifications params = {} for param_name, param_spec in search_parameters.items(): try: params[param_name] = suggest_parameter(trial, param_name, param_spec) except Exception as e: print(f"Error suggesting parameter {param_name}: {str(e)}") return float('inf') # Update model parameters and train if "augmented_feature" in params: params['augmented_feature'] = parse_list_params(params['augmented_feature']) self.set_params(**params) self.fit(X_train, y_train, X_val, y_val, X_unlbl) # Get evaluation score eval_data = (X_val if X_val is not None else X_train) eval_labels = (y_val if y_val is not None else y_train) eval_results = self.predict(eval_data) score = float(self.evaluate_criterion(eval_labels, eval_results['prediction'])) # Update best state if current score is better is_better = ( score > best_score if self.evaluate_higher_better else score < best_score ) if is_better: best_score = score best_state_dict = { 'model': self.model.state_dict(), 'architecture': self._get_model_params() } best_trial_params = params.copy() best_loss = self.fitting_loss.copy() # Added .copy() for safety best_epoch = self.fitting_epoch if self.verbose: print( f"Trial {trial.number}: {self.evaluate_name} = {score:.4f} " f"({'better' if is_better else 'worse'} than best = {best_score:.4f})" ) print("Current parameters:") for param_name, value in params.items(): print(f" {param_name}: {value}") # Return score (negated if higher is better, since Optuna minimizes) return -score if self.evaluate_higher_better else score # Create study with optional output control optuna.logging.set_verbosity( optuna.logging.INFO if self.verbose else optuna.logging.WARNING ) # Create and run study study = optuna.create_study( direction="minimize", study_name=f"{self.model_name}_optimization" ) study.optimize( objective, n_trials=n_trials, catch=(Exception,), show_progress_bar=self.verbose ) if best_state_dict is not None: self.set_params(**best_trial_params) # Initialize model with saved architecture parameters self._initialize_model(self.model_class) # Load the saved state dict self.model.load_state_dict(best_state_dict['model']) self.fitting_loss = best_loss self.fitting_epoch = best_epoch self.is_fitted_ = True if self.verbose: print(f"\nOptimization completed successfully:") print(f"Best {self.evaluate_name}: {best_score:.4f}") eval_data = (X_val if X_val is not None else X_train) eval_labels = (y_val if y_val is not None else y_train) eval_results = self.predict(eval_data) score = float(self.evaluate_criterion(eval_labels, eval_results['prediction'])) print('post score is: ', score) print("\nBest parameters:") for param, value in best_trial_params.items(): param_spec = search_parameters[param] print(f" {param}: {value} (type: {param_spec.param_type.value})") print("\nOptimization statistics:") print(f" Number of completed trials: {len(study.trials)}") print(f" Number of pruned trials: {len(study.get_trials(states=[optuna.trial.TrialState.PRUNED]))}") print(f" Number of failed trials: {len(study.get_trials(states=[optuna.trial.TrialState.FAIL]))}") return self
[docs] def fit( self, X_train: List[str], y_train: Optional[Union[List, np.ndarray]], X_val: Optional[List[str]] = None, y_val: Optional[Union[List, np.ndarray]] = None, X_unlbl: Optional[List[str]] = None, ) -> "GNNMolecularPredictor": """Fit the model to the training data with optional validation set. Parameters ---------- X_train : List[str] Training set input molecular structures as SMILES strings y_train : Union[List, np.ndarray] Training set target values for property prediction X_val : List[str], optional Validation set input molecular structures as SMILES strings. If None, training data will be used for validation y_val : Union[List, np.ndarray], optional Validation set target values. Required if X_val is provided X_unlbl : List[str], optional Unlabeled set input molecular structures as SMILES strings. Returns ------- self : GNNMolecularPredictor Fitted estimator """ if (X_val is None) != (y_val is None): raise ValueError( "Both X_val and y_val must be provided for validation. " f"Got X_val={X_val is not None}, y_val={y_val is not None}" ) self._initialize_model(self.model_class) self.model.initialize_parameters() optimizer, scheduler = self._setup_optimizers() # Prepare datasets and loaders X_train, y_train = self._validate_inputs(X_train, y_train) train_dataset = self._convert_to_pytorch_data(X_train, y_train) train_loader = DataLoader( train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=0 ) if X_val is None or y_val is None: val_loader = train_loader warnings.warn( "No validation set provided. Using training set for validation. " "This may lead to overfitting.", UserWarning ) else: X_val, y_val = self._validate_inputs(X_val, y_val) val_dataset = self._convert_to_pytorch_data(X_val, y_val) val_loader = DataLoader( val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=0 ) # Initialize training state self.fitting_loss = [] self.fitting_epoch = 0 best_state_dict = None best_eval = float('-inf') if self.evaluate_higher_better else float('inf') cnt_wait = 0 for epoch in range(self.epochs): # Training phase train_losses = self._train_epoch(train_loader, optimizer, epoch) self.fitting_loss.append(np.mean(train_losses)) # Validation phase current_eval = self._evaluation_epoch(val_loader) if scheduler: scheduler.step(current_eval) # Model selection (check if current evaluation is better) is_better = ( current_eval > best_eval if self.evaluate_higher_better else current_eval < best_eval ) if is_better: self.fitting_epoch = epoch best_eval = current_eval best_state_dict = self.model.state_dict() cnt_wait = 0 else: cnt_wait += 1 if cnt_wait > self.patience: if self.verbose: print(f"Early stopping triggered after {epoch} epochs") break if self.verbose and epoch % 10 == 0: print( f"Epoch {epoch}: Loss = {np.mean(train_losses):.4f}, " f"{self.evaluate_name} = {current_eval:.4f}, " f"Best {self.evaluate_name} = {best_eval:.4f}" ) # Restore best model if best_state_dict is not None: self.model.load_state_dict(best_state_dict) else: warnings.warn( "No improvement was achieved during training. " "The model may not be fitted properly.", UserWarning ) self.is_fitted_ = True return self
[docs] def predict(self, X: List[str]) -> Dict[str, np.ndarray]: """Make predictions using the fitted model. Parameters ---------- X : List[str] List of SMILES strings to make predictions for Returns ------- Dict[str, np.ndarray] Dictionary containing: - 'prediction': Model predictions (shape: [n_samples, n_tasks]) """ self._check_is_fitted() # Convert to PyTorch Geometric format and create loader X, _ = self._validate_inputs(X) dataset = self._convert_to_pytorch_data(X) loader = DataLoader(dataset, batch_size=self.batch_size, shuffle=False) if self.model is None: raise RuntimeError("Model not initialized") # Make predictions self.model = self.model.to(self.device) self.model.eval() predictions = [] with torch.no_grad(): for batch in tqdm(loader, disable=not self.verbose): batch = batch.to(self.device) out = self.model(batch) predictions.append(out["prediction"].cpu().numpy()) return { "prediction": np.concatenate(predictions, axis=0), }
def _evaluation_epoch( self, loader: DataLoader, ) -> float: """Evaluate the model on given data. Parameters ---------- loader : DataLoader DataLoader containing evaluation data train_losses : List[float] Training losses from current epoch Returns ------- float Evaluation metric value (adjusted for higher/lower better) """ self.model.eval() y_pred_list = [] y_true_list = [] with torch.no_grad(): for batch in loader: batch = batch.to(self.device) out = self.model(batch) y_pred_list.append(out["prediction"].cpu().numpy()) y_true_list.append(batch.y.cpu().numpy()) y_pred = np.concatenate(y_pred_list, axis=0) y_true = np.concatenate(y_true_list, axis=0) # Compute metric metric_value = float(self.evaluate_criterion(y_true, y_pred)) # Adjust metric value based on higher/lower better return metric_value def _train_epoch(self, train_loader, optimizer, epoch): """Training logic for one epoch. Args: train_loader: DataLoader containing training data optimizer: Optimizer instance for model parameter updates Returns: list: List of loss values for each training step """ self.model.train() losses = [] iterator = ( tqdm(train_loader, desc="Training", leave=False) if self.verbose else train_loader ) for batch in iterator: batch = batch.to(self.device) optimizer.zero_grad() # Forward pass and loss computation loss = self.model.compute_loss(batch, self.loss_criterion) loss.backward() # Compute gradient norm if gradient clipping is enabled if self.grad_clip_value is not None: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.grad_clip_value) optimizer.step() losses.append(loss.item()) # Update progress bar if using tqdm if self.verbose: iterator.set_postfix({"Epoch": epoch, "Loss": f"{loss.item():.4f}"}) return losses