Source code for torch_molecule.nn.attention

from torch.jit import Final
import torch.nn.functional as F
from itertools import repeat
import collections.abc

import torch
import torch.nn as nn

[docs] class AttentionWithNodeMask(nn.Module): fast_attn: Final[bool] def __init__( self, dim, num_head=8, qkv_bias=False, qk_norm=False, attn_drop=0., proj_drop=0., norm_layer=nn.LayerNorm, ): super().__init__() assert dim % num_head == 0, 'dim should be divisible by num_head' self.num_head = num_head self.head_dim = dim // num_head self.scale = self.head_dim ** -0.5 self.fast_attn = hasattr(torch.nn.functional, 'scaled_dot_product_attention') # FIXME assert self.fast_attn, "scaled_dot_product_attention Not implemented" self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop)
[docs] def forward(self, x, node_mask): B, N, D = x.shape # B, head, N, head_dim qkv = self.qkv(x).reshape(B, N, 3, self.num_head, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # B, head, N, head_dim q, k = self.q_norm(q), self.k_norm(k) attn_mask = (node_mask[:, None, :, None] & node_mask[:, None, None, :]).expand(-1, self.num_head, N, N) attn_mask = attn_mask.clone() attn_mask[attn_mask.sum(-1) == 0] = True x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p, attn_mask=attn_mask, ) x = x.transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x